Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Studying the abundances in metal-poor globular clusters is crucial for understanding the formation of the Galaxy and the nucleosynthesis processes in the early Universe. We observed 13 red-giant stars from the metal-poor globular cluster NGC 2298 using the newly commissioned GHOST spectrograph at Gemini South. We derived stellar parameters and abundances for 36 species across 32 elements, including 16 neutron-capture elements. We find that the stars exhibit chemical anomalies among the light elements, allowing us to classify them into first generation (eight stars) and second generation (five stars). We derive a mean cluster metallicity of [Fe/H] = −1.98 ± 0.10 with no significant variation among cluster members. Mostα- and Fe-peak elements display low star-to-star abundance dispersion, with notable exceptions for Sc, Ni, and Zn for which the dispersions in Sc vary significantly between stars from different generations to 2σlevels. Similarly, among the neutron-capture elements, we observed considerable differences in dispersion for Sr and Eu among the first and second generation stars to 2σlevels. We also confirm an intrinsic scatter beyond observational uncertainties for several elements using a maximum likelihood approach among stars from different generations. Additionally, we note an increase in [Sr/Eu] and [Ba/Eu] with [Mg/Fe] in first-generation stars indicating correlations between the productions of lightrprocess and Mg. We find the universalr-process pattern, but with larger dispersions in the mainrprocess than the limited-relements. These differences in abundance dispersion, among first- and second-generation stars in NGC 2298, suggest complex and inhomogeneous early chemical enrichment processes, driven by contributions from multiple nucleosynthetic events, including massive stars and rarer-process events.more » « lessFree, publicly-accessible full text available June 19, 2026
-
Abstract Understanding the abundance pattern of metal-poor stars and the production of heavy elements through various nucleosynthesis processes offers crucial insights into the chemical evolution of the Milky Way, revealing primary sites and major sources of rapid neutron-capture process (r-process) material in the Universe. In this fifth data release from theR-Process Alliance (RPA), we present the detailed chemical abundances of 41 faint (down toV= 15.8) and extremely metal-poor (down to [Fe/H] = −3.3) halo stars selected from the RPA. We obtained high-resolution spectra for these objects with the HORuS spectrograph on the Gran Telescopio Canarias. We measure the abundances of light,α, Fe-peak, and neutron-capture elements. We report the discovery of five carbon-enhanced metal-poor, one limited-r, threer-I, and fourr-II stars, and six Mg-poor stars. We also identify one star of a possible globular cluster origin at an extremely low metallicity at [Fe/H] = −3.0. This adds to the growing evidence of a lower-limit metallicity floor for globular cluster abundances. We use the abundances of Fe-peak elements and theα-elements to investigate the contributions from different nucleosynthesis channels in the progenitor supernovae. We find the distribution of [Mg/Eu] as a function of [Fe/H] to have different enrichment levels, indicating different possible pathways and sites of their production. We also reveal differences in the trends of the neutron-capture element abundances of Sr, Ba, and Eu of variousr-I andr-II stars from the RPA data releases, which provide constraints on their nucleosynthesis sites and subsequent evolution.more » « less
-
ABSTRACT We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H] = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.more » « less
-
ABSTRACT There has been a concerted effort in recent years to identify the astrophysical sites of the r-process that can operate early in the galaxy. The discovery of many r-process-enhanced (RPE) stars (especially by the R-process Alliance collaboration) has significantly accelerated this effort. However, only limited data exist on the detailed elemental abundances covering the primary neutron-capture peaks. Subtle differences in the structure of the r-process pattern, such as the relative abundances of elements in the third peak, in particular, are expected to constrain the r-process sites further. Here, we present a detailed elemental-abundance analysis of four bright RPE stars selected from the HESP–GOMPA survey. Observations were carried out with the 10-m class telescope Gran Telescopio Canarias (GTC), Spain. The high spectral signal-to-noise ratios obtained allow us to derive abundances for 20 neutron-capture elements, including the third r-process peak element osmium (Os). We detect thorium (Th) in two stars, which we use to estimate their ages. We discuss the metallicity evolution of Mg, Sr, Ba, Eu, Os, and Th in r-II and r-I stars, based on a compilation of RPE stars from the literature. The strontium (Sr) abundance trend with respect to europium (Eu) suggests the need for an additional production site for Sr (similar to several earlier studies); this requirement could be milder for yttrium (Y) and zirconium (Zr). We also show that there could be some time delay between r-II and r-I star formation, based on the Mg/Th abundance ratios.more » « less
An official website of the United States government
